
TraceViz: “Brushing” for Location Based Services
Yung-Ju Chang, Pei-Yao Hung, and Mark W. Newman

School of Information, University of Michigan
Ann Arbor, 48109

{yuchang,peiyaoh,mwnewman}@umich.edu

ABSTRACT
The popularization of Location Based Services (LBS) has
created new challenges for interaction designers in
validating the design of their applications. Existing tools
designed to play back GPS location traces data streams
have shown potential for testing LBS applications and for
supporting rapid and reflective prototyping. However,
selecting a useful set of location traces from among a large
collection remains a difficult task. In this paper, we present
TraceViz, the first system that is aimed specifically at
supporting LBS designers in exploring, filtering, and
selecting location traces. TraceViz employs dynamic
queries and “brushing” to allow LBS designers to flexibly
adjust their trajectory filter criteria to find location traces of
interest. An evaluation performed with eight LBS designers
and developers indicates that TraceViz is helpful for rapidly
locating useful traces and also highlights areas for future
improvement.

Author Keywords
Location-based services; design tools; information
visualization; direct manipulation; capture and playback

ACM Classification Keywords
D.2.2 [Design Tools and Techniques]: User interfaces;
H.5.2 [User Interfaces]: Interaction styles

INTRODUCTION
Commercial location-based services (LBS) have been
popular on many mobile platforms in recent years because
of the low cost of sensors and widespread high-speed
mobile Internet access. In addition to these commercial
LBSes, many researchers have sought to develop a variety
of LBSes for mobile guides, transport support, mobile
gaming, and assistive technology and health [7]. However,
to develop a high-quality LBS, testing and evaluation are
essential tasks during development. Because an LBS is
meant to provide information based on location context—
i.e., a user’s current location, trajectory, speed, or
direction—it is critical that the designers examine and
evaluate their LBS’s design and behavior in realistic

situations by testing with real location data. While field
testing is an important technique for evaluating application
behavior under realistic conditions, it can be expensive,
time consuming, and infeasible early in the design process.
An alternative approach is to bring the field into the lab by
capturing naturalistic location data to “play back” during
development time to enable rapid iterative design and
testing [6].

Several widely used LBS development tools such as the
Dalvik Debug Monitor Server (DDMS)1 for Android and
the location simulator of Xcode2 for iOS development both
provide a location testing feature that allows LBS designers
to examine how application prototypes behave with actual
GPS location data traces. Thanks to the prevalence of
mobile GPS recording applications, it has become
increasingly easy and economical for designers to capture a
large collection of location traces. However, as an
increasing amount of GPS location data has been captured
and aggregated, it becomes difficult to select particular
location traces for testing. While general-purpose
geovisualization tools like Google Earth Desktop3 can be
used to visualize location traces on a map, it remains
challenging to explore, filter, and select individual location
traces when presented with a large set of data.

Consequently, a tool that can effectively filter and highlight
relevant location traces is needed. To address these needs,
we developed a trace filter and selection tool called
TraceViz to allow LBS designers to filter by brushing to
directly indicate geographical regions and trajectories of
interest. TraceViz provides three brush modes—Reselect,
Intersect, and Union—to allow designers to flexibly narrow
down or expand filter criteria. When a brush stroke is
drawn, the system calculates the similarity score of nearby
traces and adjusts their visual saliency: only highly similar
traces remain salient on the map to make it easier to
highlight and select those relevant traces. After selecting
traces of interest, the designer can import the selected traces
from into their chosen playback tool.

1 http://developer.android.com/guide/developing/debugging/
ddms.html
2 http://developer.apple.com/xcode/
3 http://www.google.com/earth/explore/products/desktop.html

This is the preprint version of the manuscript. For the published version,
see https://doi.org/10.1145/2371574.2371628

copies of all or part of this work for
personal or classroom use is granted
without fee provided that copies are
not made or distributed for profit or
commercial advantage and that copies
bear this notice and the full citation
on the first page. To copy otherwise,

TraceViz is the first tool to leverage brushing to help LBS
designers explore, filter, and select location traces for
testing LBSes. By making it easier to find and select
relevant traces, TraceViz can potentially encourage LBS
designers and researchers to validate the design of their
location-aware applications with a greater variety of
location traces, in turn producing higher-quality systems. In
the remainder of this paper we discuss related work,
describe the TraceViz system with a focus on the
implementation of brush-based filtering, and present the
results of a preliminary evaluation.

RELATED WORK
A number of geovisualization systems have been developed
for supporting movement analysis, identifying trajectory
patterns and path summarization (e.g.[1,3]). These systems,
however, have not focused on supporting the selection of
specific examples for application testing. Brushing has been
proposed in GIS systems for data linking and highlighting
(e.g. [5]), as well as for specifying queries. de Silva and
Aizawa [2], implemented a system for users to sketch a
path or an area on a map to query linked multimedia data
related to that path or area. FromDady [4] employs brushing
to support iterative queries for helping visual analysis of
aircraft trajectories. TraceViz is unique from these prior
systems in that: a) brushing is used as a way for specifying
trajectory as a filter criterion rather than simply for
querying data in a brushed area, and b) it is the first work
dedicated to supporting LBS designers in exploring,
filtering, and selecting specific location traces for playback
and application testing.

A SCENARIO OF USING TRACEVIZ
Here, we describe a scenario in which a LBS designer
would like to use TraceViz to find particular location traces.

David is a LBS designer who is developing an application
that recommends promotions to a user based on their
current location and recent trajectory. Knowing that such
an application would need to intensively respond to
location updates at various places in the downtown area,
David’s team recruits prospective users to collect a large
collection of location traces for testing. As the application
prototype evolves, David wants to test the prototype with a
number of test cases that involve a traveler passing by
specific promotions. To find traces that travel specific
routes will require David to review all of the traces his
team has collected, so he turns to TraceViz.

David launches TraceViz and uses the search box to center
the map on a certain restaurant. He enables the brush mode
and brushes a route along a street on which a promotion is
located. This results in only five traces that pass through
the area he brushed on the map. David selects one location
trace from this set, and uses it for testing the application.

THE TRACEVIZ INTERFACE
TraceViz consists of three major components, as shown in
Figure 1. The TraceViewer (Figure 1b) visualizes location
traces and allows users to brush to filter traces. Traces are
color-coded based on whether they are highlighted,
selected, or brushed. Users can hover over a trace to view
detailed information in the TraceInfo Panel (Figure 1c), and
they can click on the trace to select it. The Control Panel
(Figure 1a) allows filtering based on trace duration and
distance, and additionally provides controls for users to
select brush modes, adjust brush thickness, and set a brush
tolerance threshold. Users can utilize the time and physical
length filters location traces by time duration and physical
length of the traces in addition to brushing. The brush
thickness slider allows users to adjust the coverage of a
brush stroke. The tolerance threshold slider controls

Figure 1. (Left) The main interface of TraceViz consists of three components. The Control Panel (a) contains a search box for
geographical queries, brush related controls, and generic filtering controls. The TraceViewer (b) allows users to view traces and

filter them by brushing. The Trace Info Panel (c) displays detailed information about a currently highlighted trace. (Right) With a
large number of overlapping traces it is difficult it is to distinguish one location trace from others.

b

c
c
)

a
a
)

whether a brushed trace should be displayed based upon its
similarity to the brush stroke. The brush mode buttons
allow users to switch among the Reselect, Intersect, and
Union modes (described below). Once one has selected a
set of location traces, the selected traces can be downloaded
in a preferred file format (e.g., GPX) or loaded directly into
RePlay [6], a dedicated capture and playback tool.

TraceViz was built using the Flex 4.1 SDK and uses the
Google Map API for Flash. It can run on any browser with
Flash Player 10 installed. It connects to a MySQL database
that contains the traces, and has the ability to import traces
in standard file formats such as GPX.

BRUSHING TO EXPLORE AND FILTER TRACES
Brushing is a direct manipulation technique that TraceViz
employs to allow users to specify trajectories on a map to
filter traces that are “similar” to the brushed stroke. When a
brush stroke is drawn on the TraceViewer, we determine
which traces are “similar” to the stroke as follows:

1. We identify a set of candidate traces by including all
traces that have at least one point within the stroke’s
candidate area, which we define as a rectangular area
around the stroke that is 2 * brush thickness pixels
larger than the stroke bounds in all directions. The goal
of this step is to reduce the number of traces that are
subsequently considered while retaining enough
information about each trace to be able to determine
the degree to which it is aligned with the brush stroke.

2. For each candidate trace, we compute the brush-to-
trace similarity by computing the proportion of brush
points that are near (i.e., within brush thickness of) at
least one trace point. This gives a higher score to traces
that are well aligned with the brush stroke throughout
the stroke’s entire length. It also penalizes traces that
have few points that fall within the brush stroke,
whether due to misalignment or due to sparse data.

3. We also compute the trace-to-brush similarity for each
trace by computing the proportion of trace points that
are near at least one brush point. This gives a higher
score to traces whose nearby points lie mostly within
the brush area and penalizes traces whose trajectories
diverge from that of the stroke. While in most cases the
brush-to-trace and trace-to-brush scores are redundant,
both are needed to deal with cases where the trace and
brush point densities differ.

4. Finally, we compute the overall similarity by averaging
the trace-to-brush and brush-to-trace similarity scores.
Note that all traces that lie outside the candidate area
are assigned an overall similarity of zero.

Each trace is then rendered on the map according to its
similarity score: first, all traces with similarity scores
below the user-defined tolerance threshold are given alpha
values of zero, and all other traces are given alpha values
proportional to their similarity score.

As an example, consider the situation depicted in Figure 2.
Trace 1 (green stars) is assigned a brush-to-trace similarity
of 1 since all of the brush points are near to at least one
trace point. It receives a trace-to-brush similarity of 0.83
since 10 of 12 candidate points are near at least one brush
point. The overall similarity is therefore 0.92. Trace 2 (blue
squares), on the other hand, receives a brush-to-trace
similarity of 0.44 since 4 of 9 brush points are near at least
one trace point, and a trace-to-brush similarity of 0.71
since 5 of 7 trace points are near a brush point. Trace 2’s
overall similarity is thus 0.58.

In order to give LBS designers additional control, TraceViz
provides three brush modes—Reselect, Intersect, and
Union. In Reselect mode, every stroke generates a new
result. In Intersect mode (shown in Figure 3), each stroke
after the first refines the filter to show only traces that pass
through all strokes, whereas in Union mode each stroke
widens the filter to include traces that pass through any
stroke. As an example, we return to our earlier scenario to
illustrate the use of Intersect mode:

David wants to find a trace passing by both a coffee house
and a bookstore that are on two different streets. He uses
the Intersect mode to brush two strokes near the coffee
house and the bookstore, respectively. However, he finds
that the filtered traces are still many and overlap one
another. As a result, he brushes the third stroke on another
street to refine the filtered results. Now David can easily
distinguish the traces and select them for testing.

USER STUDY
To observe whether and to what extent TraceViz can help
LBS designers efficiently select location traces, we
conducted a preliminary usability evaluation. We recruited
eight people with experience in designing or developing
mobile applications to participate and asked them to use
TraceViz to perform four tasks in which they selected
traces to load into RePlay [6]. Their goal was to test aspects
of a sample LBS called Here & Now (H&N), which is a
location-based advertising application we developed for the
purpose of testing TraceViz and related tools. H&N allows
merchants to create promotions that are delivered to mobile
customers and allows customers to see the promotions
nearby their current location. Customers can adjust the
“notification range” within which they receive information

Figure 2. When a brush stroke is drawn, TraceViz computes
the “similarity” of all nearby traces to the stroke. Here, two
candidate traces intersect the candidate area (dashed yellow
line). The top trace (green stars) is found to be more similar

than the bottom trace (blue squares) because more of its points
lie within the brush stroke region (pink oval).

about promotions. Our tasks were all based on finding
traces that would be suitable for testing this feature.

In the first task, participants were asked to practice
selecting a trace by brushing. In the second task, they
needed to find a trace that allowed testing different display
ranges (0.5 km, 1km, and 2km) and show that H&N
respected users’ preferences in all cases. In the third task,
participants had to find traces that passed by at least two
active promotions. Finally, in task 4, participants needed to
find two traces that approached a promotion from different
directions in order to show H&N working with multiple
simultaneous users. We provided each participant with 200
GPS traces collected in Ann Arbor, Michigan, USA (the
city where our study took place). All participants received a
demonstration of TraceViz, RePlay, and H&N at the
beginning of the session. Upon completing the tasks they
were asked about their reflections on using TraceViz.
Participants were encouraged to solve the tasks in any way
they wished, and were not directed to use particular features
of TraceViz. Video and audio for all sessions was captured,
along with detailed session notes, and these data were
reviewed to assess and interpret task success, critical
incidents, and participant satisfaction.

Seven of the eight participants were able to finish all four
tasks with little or no assistance. Most participants were
able to find suitable traces within one or two attempts for
each task. This suggests that TraceViz as a whole is able to
support LBS designers’ in efficiently finding and selecting
traces for testing a LBS. Moreover, participants developed
several different strategies of using brushing for finding
suitable traces. For example, while some participants used
the Intersect mode for finding traces passing by two
specific areas, other participants used it simply for reducing
the number of traces on the map.

However, we also uncovered several shortcomings to be
addressed in future versions of TraceViz. Some
shortcomings were basic usability problems, such as
confusion about the brush mode names and difficulties
switching between brushing, selecting traces, and panning
the map. Additionally, most participants struggled when
choosing a trace with unexpected characteristics, including
changes in direction and speed or poor signal quality. For
instance, P2 selected a trace with sparse location records

(probably due to poor GPS signal), and it took her a long
time to accomplish one of the tasks as a result. Improving
TraceViz to provide more detailed information about traces,
such as speed, signal quality, and direction of travel would
likely help with this problem. We also observed that
participants had trouble understanding a trace’s overall
trajectory once they had zoomed the map in too far. Better
overviews in the TraceInfo Panel could help here. Finally,
sometimes participants still encountered difficulties
selecting overlapping traces even after brushing and using
other filter controls. This suggests that more precise
selection capabilities may be needed for especially dense
data sets. We plan to address these issues in future work.

CONCLUSION
In this paper we have presented and evaluated TraceViz, a
novel tool that employs “brushing” to support LBS
designers in exploring, filtering and selecting GPS location
traces from large data sets. TraceViz supports Reselect,
Intersect, and Union modes to enable LBS designers to
more flexibly explore and filter location traces based on
trajectories in order to meet various testing requirements.
We believe that with the support of TraceViz, LBS
designers will have more incentive to test their LBS with a
larger variety of location traces, which will in turn help the
designers produce higher quality designs.

ACKNOWLEDGMENTS
We thank Eytan Adar, Mark Ackerman, and members of
the Interaction Ecologies group for helpful comments on
this work. We also thank our study participants.

REFERENCES
1. Andrienko, G., et al. Interactive visual clustering of

large collections of trajectories. In Proc. VAST 2009,
 3-10.
2. de Silva, G.C., Yamasaki, T., and Aizawa, K. Sketch-

based spatial queries for retrieving human locomotion
patterns from continuously archived GPS data. IEEE
Transactions on Multimedia 11, 7 (2009), 1240 -1253.

3. Girardin, F., et al. Digital Footprinting: Uncovering
Tourists with User-Generated Content. IEEE Pervasive
Computing 7, 4 (2008), 36-43.

4. Hurter, C., Tissoires, B., and Conversy, S. FromDaDy:
Spreading aircraft trajectories across views to support
iterative queries. IEEE Transactions on Visualization
and Computer Graphics 15, 6 (2009), 1017–1024.

5. Monmonier, M. Geographic brushing: Enhancing
exploratory analysis of the scatterplot matrix.
Geographical Analysis 21, 1 (1989), 81–84.

6. Newman, M.W., et al. Bringing the field into the lab:
supporting capture and replay of contextual data for the
design of context-aware applications. In Proc. UIST
2010, 105-108.

7. Raper, J., et al. Applications of location–based services:
a selected review. Journal of Location Based Services 1,
2 (2007), 89–111.

Figure 3. The Intersect brush mode allows an LBS developer
to refine a filter by adding additional brush strokes, as shown

here from left to right.

